Inorg. Chem. 2003, 42, 8320-8327

A Novel Layered Niobium Oxychloride Compound Based on Nb₂ Pairs and Nb₆ Octahedral Clusters: Synthesis and Crystal and Electronic Structures of Nb₁₀Cl₁₆O₇

Stéphane Cordier,^{*,†} Fakhili Gulo,[‡] Thierry Roisnel,[†] Régis Gautier,[§] Boris le Guennic,[†] Jean François Halet,[†] and Christiane Perrin[†]

Laboratoire de Chimie du Solide et Inorganique Moléculaire (LCSIM), UMR 6511 CNRS-Université de Rennes 1, Institut de Chimie de Rennes, Avenue du Général Leclerc, 35042 Rennes Cedex, France, and Laboratoire de Physicochimie, UPRES 1795, Ecole Nationale Supérieure de Chimie de Rennes, Institut de Chimie de Rennes, Campus de Beaulieu, 35700 Rennes, France

Received September 17, 2003

The synthesis, single crystal structure determination, and electronic structure of Nb₁₀Cl₁₆O₇, the first Nb₆ oxychloride stabilized without countercation, are reported in this work. The crystal structure is very original since it consists of layers built up from both Nb₆ octahedral clusters and Nb₂ pairs. The Nb₆Oⁱ₆Cl⁴₆Cl^a₆ and Nb₂(μ_2 -Cl)₂Cl₄O₄ units form [Nb₆Clⁱ₆Oⁱ₄Oⁱ⁻ⁱ_{2/2}Cl^{a-a}_{4/2}Cl^a₂]_∞ infinite chains and [{Nb₂(μ_2 -Cl)₂O_{2/2}Cl_{4/2}O₂}₂]_∞ double chains, respectively, that are interconnected by shared oxygen and chlorine ligands leading to layers. The cohesion of the three-dimensional structure (3D) is ensured by van der Waals contacts between layers that are randomly stacked along the [011] direction. Structural correlations between Nb₁₀Cl₁₆O₇ and related Nb₆ cluster oxyhalides, as well as NbOCl₂ and NbCl₄ containing Nb₂ pairs, are discussed. DFT results show that among the 20 valence electrons involved in the metal–metal bonding states, 14 electrons belong to the octahedral Nb₆Clⁱ₆Oⁱ₆Oⁱ₆Cl^a₆ unit whereas the 6 others (i.e., 1.5 per Nb atom) participate in the bonding in the distorted [{Nb₂(μ_2 -Cl)₂O_{2/2}Cl_{4/2}O₂}₂]_∞ double chains.

Introduction

The $[(Nb_6L^{i}_{12})L_6^{a}]^{n-}$ cluster unit (L = F, Cl, Br, O) constitutes the basic building block of niobium octahedral cluster chemistry.¹ The Nb₆ cluster, edge-bridged by 12 μ_2 inner ligands (Lⁱ), is stabilized by six additional ligands in terminal position (L^a) (a = apical, i = inner according to the Schäfer and Schnering notation).² In halides, the unit interconnection via shared apical ligand (L^{a-a}) leads to one-, two-, or three-dimensional unit networks as observed, for instance, in Cs₂Nb₆Br₅F₁₂ (Cs₂Nb₆Brⁱ₅Fⁱ₇F^{a-a}_{2/2}F^a₄),³ Li₂Nb₆- Cl₁₆ (Li₂Nb₆Clⁱ₁₂Cl^{a-a}_{4/2}Cl^a₂),⁴ and Nb₆F₁₅ (Nb₆Fⁱ₁₂F^{a-a}_{6/2}),⁵ respectively. On the other hand, in the case of oxides, the Nb₆Oⁱ₁₂O^a₆ unit condensation occurs not only through O^{a-a} but also through O^{i-a} and Oⁱ⁻ⁱ bridges.⁶ In contrast to the molecular character of the Nb₆ cluster halides, the strong interactions between the Nb₆Oⁱ₁₂O^a₆ units in niobium oxides frequently lead to band structures.⁷ The ultimate condensation of the Nb₆Oⁱ₁₂O^a₆ units, observed in the NbO (Nb₆₂Oⁱ⁻ⁱ⁻ⁱ⁻ⁱ_{12/4}) binary compound, induces transport properties with a superconducting transition at low temperature.⁸ The physical properties of the cluster compounds are related to the strength of interaction between cluster units and the number of electrons available for metal—metal bonding, the so-called valence electron count (VEC). Hitherto, for pure oxides and

10.1021/ic0350990 CCC: \$25.00 © 2003 American Chemical Society Published on Web 11/01/2003

^{*} To whom correspondence should be addressed. E-mail: stephane.cordier@univ-rennes1.fr.

[†] CNRS-Université de Rennes 1.

[‡] Permanent address: FKIP Universitas Sriwijaya, Kampus-Inderalaya, Palembang, Indonesia.

[§] Ecole Nationale Supérieure de Chimie de Rennes.

 ⁽a) Perrin, C.; Cordier, S.; Ihmaïne, S.; Sergent, M. J. Alloys Compd. 1995, 229, 125. (b) Köhler, J.; Svensson, G.; Simon, A. Angew. Chem., Int. Ed. Engl. 1992, 31 (1), 1437. (c) Cordier, S.; Hernandez, O.; Perrin, C. J. Fluorine Chem. 2001, 107, 205.

⁽²⁾ Schäfer, H.; von Schnering, H.-G. Angew. Chem. 1964, 76, 833.

⁽³⁾ Cordier, S.; Hernandez, O.; Perrin, C. J. Solid State Chem. 2002, 163, 319.

⁽⁴⁾ Bajan, B.; Meyer, H.-J. Z. Anorg. Allg. Chem. 1997, 623, 791.

⁽⁵⁾ Schäfer, H.; Schnering, H. G.; Niehues, K. J.; Nieder-Varenholz, H. G. J. Less-Common Met. 1965, 9, 95.

⁽⁶⁾ Svensson, G.; Köhler, J.; Simon, A. Metal Clusters in Chemistry; Braunstein, P., Oro, L. A., Raithby, P. R., Eds.; Wiley-VCH: Weinheim, 1999; p 1485.

⁷⁾ Vajenine, G. V.; Simon, A. Inorg. Chem. 1999, 38, 3463.

⁽⁸⁾ Brauer, G. Z. Anorg. Allg. Chem. 1941, 248, 1.

halides containing $[(M_6L_{12}^i)L_6^a]^{n-1}$ units, it has been experimentally found that the VEC lies between 13 and 16 electrons per Nb₆ cluster.

The discovery of the first Nb₆ oxyhalide by some of us, namely ScNb₆Cl₁₃O₃,⁹ opened the field of a new class of octahedral niobium cluster compounds. The ordered oxygen/ halogen distribution within the Nb₆X_{18-x}O_x unit (X = Cl or Br) leads to great distortions of the cluster and to various electronic counts (13-16) in relation to the discrepancy between the ionic radii and between the charges of oxygen and chlorine or bromine atoms.¹⁰ Furthermore, the condensation of oxychloride units through Oi-a and Oa-i bridges allowed us to stabilize low-dimensional structures such as Na_{0.21}Nb₆Cl_{10.5}O₃, for instance, which exhibits a graphitelike topology¹¹ or CsNb₆Cl₁₂O₂ which is built from chains of cluster units.12 Over the past few years, numerous niobium oxychlorides based on $(Nb_6Cl_{12-x}O_x)^{n+}$ cluster cores with x = 1-6 have been synthesized by solid state chemistry routes and structurally characterized.^{11–13} This has been recently extended to solution chemistry yielding $[(Nb_6Cl_{12-x}O_x)^i]$ $(CN)^{a}_{6}$ ^{*n*-} anions^{14,15} that could serve as a virtual library for the construction of polymeric cluster solids with different dimensionalities as observed in rhenium cluster chemistry, for instance.¹⁶

We report here the synthesis, single crystal structure determination and electronic structure of Nb₁₀Cl₁₆O₇, the first oxychloride compound containing octahedral Nb₆ clusters stabilized without countercation. The structure of the title compound consists of layers built up from Nb₆Oⁱ₆Clⁱ₆Cl^a₆ and Nb₂(μ_2 -Cl)₂Cl₄O₄ units which form, respectively, $[Nb_6Cl_6^iO_4^iO_{4}^{i-i}2/2Cl_{4/2}^aCl_2]_{\infty}$ infinite chains and $[\{Nb_2(\mu_2 - \mu_2)\}$ Cl)₂O_{2/2}Cl_{4/2}O₂]₂]_∞ double chains interconnected by shared oxygen and chlorine ligands. The cohesion of the threedimensional structure (3D) is ensured by van der Waals contacts between layers. The crystal structure evidences a disordered stacking of layers. Structural and electronic correlations between Nb₁₀Cl₁₆O₇ and related Nb₆ cluster oxyhalides, as well as NbOCl2 and NbCl4 containing Nb2 pairs, are discussed.

Experimental Section

Synthesis. A starting mixture (3.5 g) of CsCl (Prolabo), Nb (Ventron m2N8), Nb₂O₅ (Merck, Optipur), and NbCl₅ (Alfa 99.9%)

- (9) Cordier, S.; Perrin, C.; Sergent, M. Eur. J. Solid State Inorg. Chem. 1994, 31, 1049.
- (10) Cordier, S.; Gulo, F.; Perrin, C. Solid State Sci. 1999, 1, 637.
- (11) Gulo, F.; Perrin, C. J. Solid State Chem. 2002, 163, 325.
 (12) Gulo, F.; Perrin, C. J. Mater. Chem. 2000, 10, 1721.
- (13) (a) Cordier, S.; Perrin, C.; Sergent, M. Mater. Res. Bull. 1996, 31, 683. (b) Cordier, S.; Perrin, C.; Sergent, M. Mater. Res. Bull. 1997, 32, 25. (c) Anokhina, E. V.; Essig, M. W.; Lachgar, A. Angew. Chem., Int. Ed. 1998, 37, 522. (d) Anokhina, E. V.; Day, C. S.; Essig, M. W.; Lachgar, A. Angew. Chem., Int. Ed. 2000, 39, 1047. (e) Anokhina, E. V.; Day, C. S.; Lachgar, A. Chem. Commun. 2000, 1491. (f) Gulo, F.; Roisnel, T.; Perrin, C. J. Mater. Chem. 2001, 11, 1237. (g) Anokhina, E. V.; Day, C. S.; Lachgar, A. Inorg. Chem. 2001, 40, 507. (h) Anokhina, E. V.; Duraisamy, T.; Lachgar, A. Chem. Mater. 2002. 14. 4111.
- (14) Naumov, N. G.; Cordier, S.; Perrin, C. Angew. Chem., Int. Ed. 2002, 41. 3002
- (15) Naumov, N. G.; Cordier, S.; Gulo, F.; Roisnel, T.; Fedorov, V. E.; Perrin, C. Inorg. Chim. Acta 2003, 350, 503.
- (16) Naumov, N. G.; Virovets, A. V.; Fedorov, V. E. J. Struct. Chem. 2000, 41, 499.

(ratio 5/15/2/11) was handled, ground under inert atmosphere, and introduced in a quartz tube (length 15 cm) subsequently sealed under vacuum. This tube was then placed in a horizontal furnace, and the temperature was increased within one week in order to obtain a temperature gradient (620-700 °C). After two months of reaction, the tube was cooled to room temperature within two weeks. Fibrous crystals of Nb₁₀Cl₁₆O₇ grew on the upper side of the tube corresponding to the 640/650 °C region. A preliminary chemical analysis by energy dispersive spectrometry (EDS), using a scanning electron microscope JEOL JSM 6400 equipped with a microprobe EDS OXFORD LINK ISIS (Centre de Microscopie Electronique et de Microanalyse de l'Université de Rennes 1, France), showed that all the single crystals contained Nb, Cl, and O elements with the following atomic percentage: Nb/Cl/O 30.9/44.6/24.5 (calculated atomic percentage composition for Nb₁₀Cl₁₆O₇: 30.3/48.5/21.2). The cesium element was not detected in any crystals. Many attempts were performed to isolate single crystals for structural investigation. Indeed, they were very brittle under manipulation due to their layered structure (see a following description). Finally, small plateshaped single crystals of the title compound, suitable for X-ray diffraction studies, were carefully handled, selected, and held with grease on a capillary tube.

Further attempts to obtain Nb₁₀Cl₁₆O₇ from stoichiometric amounts of Nb, Nb₂O₅, and NbCl₅ gave a black microcrystalline compound with a good yield. Only small amounts of NbOCl₂¹⁷ were observed in the X-ray powder pattern. Despite many experiments, no single crystal suitable for structural determination has been found from these direct preparations.

Data Collection and Structural Refinement. The selected single crystals were mounted on a Nonius KappaCCD X-ray areadetector diffractometer with Mo K α radiation ($\lambda = 0.71073$ Å) (Centre de Diffractométrie de l'Université de Rennes 1, France). Diffraction intensities were collected for one of these single crystals at room temperature. Once the data processing was performed by the KappaCCD analysis software,¹⁸ the parameters of the centered monoclinic unit cell were refined as follows: a = 17.6467(8) Å, b = 3.2638(2) Å, c = 12.8928(6) Å, $\beta = 121.243(2)^{\circ}$, V = 634.88-(6) Å³. A first analysis revealed that all the selected crystals exhibited the same cell parameters within the standard uncertainties (su's) with a C-centered lattice. The structure was first solved in the C2/m space group by direct methods (SIR-97 program¹⁹) combined with Fourier difference syntheses and refined against F^2 (SHELXL-97 program²⁰). The refinements were successfully carried out in this unit cell and allowed to generate a first disordered structural model (R1 = 0.0318, wR2 = 0.0940, $\Delta \rho_{min} = -0.942$ $e^{-}/Å^3$, $\Delta \rho_{max} = 0.795 e^{-}/Å^3$; 855 independent reflections for 62 parameters and 756 reflections with $I \ge 2\sigma(I)$). This structural model will be briefly described in this paper. Complete data (CIF file) are available in Supporting Informations. This first result allowed us to conclude that the structure of the layered Nb₁₀Cl₁₆O₇ oxychloride consists of Nb₆Clⁱ₆O₆ⁱCl^a₆ units sharing two Oⁱ and four Cla ligands with adjacent units to form infinite [Nb₆Cli₆Oi₄- $O^{i-i}_{2/2}Cl^{a-a}_{4/2}Cl^{a}_{2}]_{\infty}$ chains. The presence of Nb₂(μ_2 -Clⁱ)₂Cl^a₄O^a₄ units

(20) Sheldrick, G. M. SHELXL-97: Program for the Refinement of Crystal Structure; University of Göttingen: Göttingen, Germany, 1997.

^{(17) (}a) Schnering, H. G.; Wöhrle, H. Angew. Chem. 1963, 75, 684. (b) Kepert, D. L. The Early Transition Metals; Academic Press: London, 1972. (c) Hillebrecht, H.; Schmidt, P. J.; Rotter, H. W.; Thiele, G.; Zönnchen, P.; Bengel, H.; Cantow, H.-J.; Magonov, S. N.; Whangbo, M.-H. J. Alloys Compd. 1997, 246, 70.

⁽¹⁸⁾ Nonius COLLECT, DENZO, SCALEPACK, SORTAV: KappaCCD Program Package; Nonius B. V.: Delft, The Netherlands, 1999.

⁽¹⁹⁾ Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G.; Polidori, G.; Spagna, R. J. Appl. Crystallogr. 1999, 32, 115.

Table 1. Crystal Data and Conditions of Data Collection for $Nb_{10}Cl_{16}O_7$

0 - 10 - 1	
formula	Nb10Cl16O7
$T(\mathbf{K})$	298
fw (g/mol)	1608.26
cryst size (mm ³)	$0.12 \times 0.025 \times 0.02$
cryst syst	triclinic
space group	<i>P</i> 1 (No. 2)
a (Å)	6.5140(3)
<i>b</i> (Å)	8.9728(5)
<i>c</i> (Å)	11.3463(6)
α (deg)	77.8032(3)
β (deg)	81.7310(3)
γ (deg)	79.5241(3)
$V(Å^3)$	633.56(6)
Ζ	1
d_{calcd} (g/cm ³)	4.215
$\mu ({\rm mm^{-1}})$	6.057
transm range	$0.4526 \rightarrow 0.8246$
no. reflns integrated	8029
R _{int}	0.0641
no. indep reflns	2882
no. indep reflns $I > 2\sigma(I)$	1672
$\theta_{\min}; \theta_{\max}$	2.7°; 27.52°
h	$-7 \rightarrow 8$
k	$-11 \rightarrow 11$
1	$-14 \rightarrow 14$
data/restraints/params	2883/2/123
$R1^a (I > 2\sigma(I))$	0.0479
wR2 (all data)	0.094
GOF	1.03
$(\Delta \rho)$ max, min (e/Å ³)	1.526, -1.458

 ${}^{a} \operatorname{R1} = \sum_{hkl} |F_{o} - F_{c}| / \sum_{hkl} |F_{o}|; \text{ wR2} = [\sum_{hkl} [w(F_{o}^{2} - F_{c}^{2})^{2}] / \sum_{hkl} [w(F_{o}^{2})^{2}]]^{1/2}.$

made up from Nb–Nb pairs with shorter distances than in NbOCl₂¹⁷ was also clearly evidenced. However, despite low R values and low residual peaks, this disordered model gave access to average bond lengths that made a rigorous analysis of structural results and comparison to other related compounds difficult. Furthermore, elongated displacement factors, in particular for niobium atoms located in the basal plane of octahedral clusters, left open the question of the possibility of superstructure or hidden lower symmetry. In order to clarify this point, precession images were rebuilt from data collection frames produced by the CCD detector. Then, a careful study of the hk0, hk1, etc. precession images evidenced very weak diffuse streaks, parallel to a^* , indicating a disorder along the b direction. These diffuse scattering lines are located at k = n/2 (with n = odd value) indicating that the b parameter should be multiplied by 2. Second, the other hkl precession images revealed the presence of very weak extra Bragg peaks leading to the loss of the C-centered lattice.

Indeed, the data, including weak and very weak spots, were reintegrated on the basis of a triclinic lattice, and the cell parameters were refined as follows: a = 6.5140(3) Å, b = 8.9728(5) Å, c =11.3463(6) Å, $\alpha = 77.8032(3)^\circ$, $\beta = 81.7310(3)^\circ$, $\gamma =$ 79.5241(3)°, V = 633.56(6) Å³. Crystal data and details of the final refinement are given in Table 1. The structure has been solved in the $P\overline{1}$ space group by direct methods (SIR97 program)¹⁹ combined with Fourier difference syntheses and refined against F^2 (SHELXL 97 program).²⁰ The values of the errors on the supplementary weak and very weak intensities being comparable to the values of the read intensities, the percentage of reflections with $I > 2\sigma(I)$ is lower for this new unit cell than that for the centered monoclinic one. Indeed, the refinement was based on 2882 independent reflections (1672 with $I > 2\sigma(I)$). In contrast to the first structural model, in the present case all the atoms of the structure could be discriminated owing to a lower symmetry. The first sets of refinement evidenced a layered structure with partial occupation of all structural crystallographic sites in relation to two tangled crystallographically independent sheets (sheet 1 and sheet 2) within the layers that are related to each other by a 1/2 a translation. For the sake of clarity, a differentiation between the terms layer and sheet will be made in the following. Each layer that will refer to the staking of sheet 1 and sheet 2 within the structure is constituted by one of the two independent sheets related to each other by a 1/2 a translation. Subsequently, relevant restraints on atomic displacement parameters were introduced during the refinement in order to discriminate the atoms constituting the two tangled sheets within the layers. This apparent disorder is directly related to staking faults of the layers that frequently occur in layered structures, in particular when the cohesion of the 3D structure is ensured by van der Waals contacts.^{17c} No extra symmetry was detected within the layers.

The atomic displacement parameters of the niobium atoms belonging to the clusters within the two sheets were restricted to the same value. Similar restraints were applied for the niobium atoms of the Nb₂ pairs, the Cl atoms belonging to the Nb₆ units, the O atoms belonging to the Nb₆ units, the Cl atoms belonging to the Nb₂ pairs, and the O atoms belonging to the Nb₂ pairs. Beyond the discrimination of all the atomic positions and the anisotropic refinement of all atoms, except the oxygen bridging the Nb₂ pairs, this methodology allowed us to refine the occupancy factors of sheet 1 and sheet 2 to a 70:30 ratio. The final atomic parameters and selected geometrical parameters are reported in Tables 2 and 3, respectively.

EPR Measurements. EPR measurements were made using a Bruker EMX 8/2.7 spectrometer (X-band, $\nu = 9.5$ GHz) equipped with an Oxford Instruments cryogenic unit. No signal corresponding to magnetic clusters or magnetic cations was found.

Resistivity Measurements. Electrical measurements on a compacted pellet were made by a standard four probe configuration using a dc current of 0.1 μ A in the temperature range 200–300 K. Single crystals could not be used for this measurement owing to their brittleness. Results indicate a semiconducting behavior.

Theoretical Calculations. Self-consistent ab initio band structure calculations were performed on Nb10Cl16O7 with the scalar relativistic tight-binding linear muffin-tin orbital (LMTO) method in the atomic spheres approximation including the combined correction.²¹ Exchange and correlation were treated in the local density approximation using the von Barth-Hedin local exchange correlation potential.²² Within the LMTO formalism, interatomic spaces were filled with interstitial spheres. The optimal positions and radii of these additional "empty spheres" (ES) were determined by the procedure described in ref 23. There were 41 nonsymmetry-related ES with $0.93 \le r_{\rm ES} \le 1.43$ Å introduced for the calculations. The full LMTO basis set consisted of 5s, 5p, 4d, and 4f functions for Nb spheres, 4s, 3p, and 3d for Cl spheres, 3s, 2p, and 3d functions for O spheres, and s, p, and d functions for ES. The eigenvalue problem was solved using the following minimal basis set obtained from the Löwdin downfolding technique: Nb 5s, 5p, 4d; Cl 3p; O 2p; and interstitial 1s LMTOs. The k space integration was performed using the tetrahedron method.24 Charge self-consistency

^{(21) (}a) Andersen, O. K. Phys. Rev. B 1975, 12, 3060. (b) Andersen, O. K. Europhys. News 1981, 12, 4. (c) Andersen, O. K. In The Electronic Structure Of Complex Systems; Phariseau, P., Temmerman, W. M., Eds.; Plenum Publishing Corporation: New York, 1984. (d) Andersen, O. K.; Jepsen, O. Phys. Rev. Lett. 1984, 53, 2571. (e) Andersen, O. K.; Jepsen, O.; Sob, M. In Electronic Band Structure and its Application; Yussouf, M., Ed.; Springer-Verlag: Berlin, 1986. (f) Skriver, H. L. The LMTO Method; Springer-Verlag: Berlin, 1984.

⁽²²⁾ von Barth, U.; Hedin, L. J. Phys. C: Solid State Phys. **1972**, 5, 1629.

⁽²³⁾ Jepsen, O.; Andersen, O. K. Z. Phys. B: Condens. Matter 1995, 97, 35.

Table 2. Atomic Coordinates and Isotropic Displacement Parameters (in A	Ų	<u>?</u>)	ľ
---	---	------------	---

atom	Wyckoff	осс	x	у	Z	U
			Sheet 1			
Nb1	2i	0.698(1)	0.1944(3)	0.05172(6)	0.11081(4)	0.0059(1)
Nb2	2i	0.698(1)	0.7253(3)	0.05172(6)	0.11081(4)	0.0059(1)
Nb3	2i	0.698(1)	-0.0267(2)	0.21116(18)	0.89619(13)	0.0059(1)
Nb5	2i	0.698(1)	0.7234(3)	0.3272(2)	0.62914(16)	0.0063(2)
Nb4	2i	0.698(1)	0.2988(3)	0.3279(2)	0.62882(15)	0.0063(2)
Cl1	2i	0.698(1)	0.5987(14)	-0.1371(6)	0.7496(8)	0.0082(4)
Cl2	2i	0.698(1)	0.1001(13)	-0.1428(6)	0.7486(8)	0.0082(4)
Cl4	2i	0.698(1)	0.3420(14)	-0.3293(13)	0.9906(9)	0.0082(4)
C13	2i	0.698(1)	0.1723(14)	0.3270(19)	0.0093(8)	0.0082(4)
C15	2i	0.698(1)	0.4454(16)	0.4621(12)	0.7462(8)	0.0112(8)
C16	2i	0.698(1)	-0.0524(17)	0.4634(13)	0.7371(9)	0.0112(8)
C17	2i	0.698(1)	0.5745(11)	0.1712(6)	0.5274(7)	0.0112(8)
C18	2i	0.698(1)	1.0681(10)	0.2049(6)	0.5280(6)	0.0112(8)
O2	2i	0.698(1)	0.240(2)	0.167(2)	0.783(2)	0.008(1)
01	2i	0.698(1)	0.784(3)	0.166(3)	0.784(2)	0.008(1)
O3	1d	0.698(1)	1/2	0	0	0.008(1)
O4	2i	0.698(1)	0.7160(17)	0.5011(13)	0.5002(10)	0.0118(18)
			Sheet 2			
Nb21	2i	0.302(1)	-0.3072(7)	0.05172(6)	0.11081(4)	0.0059(1)
Nb22	2 <i>i</i>	0.302(1)	0.2238(8)	0.05172(6)	0.11081(4)	0.0059(1)
Nb23	2i	0.302(1)	0.5266(5)	0.7884(4)	0.1042(3)	0.0059(1)
Nb24	2i	0.302(1)	0.2018(7)	0.6713(6)	0.3715(4)	0.0063(2)
Nb25	2i	0.302(1)	-0.2218(7)	0.6734(6)	0.3700(4)	0.0063(2)
Cl21	2i	0.302(1)	-0.086(3)	0.1166(15)	0.258(2)	0.0082(4)
Cl22	2i	0.302(1)	0.410(3)	0.1113(15)	0.259(2)	0.0082(4)
Cl23	2i	0.302(1)	-0.323(3)	0.320(3)	0.019(2)	0.0082(4)
Cl24	2i	0.302(1)	0.845(3)	-0.327(5)	0.9780(18)	0.0082(4)
Cl25	2i	0.302(1)	0.046(4)	0.520(3)	0.272(2)	0.0112(8)
Cl26	2i	0.302(1)	0.549(4)	0.517(3)	0.2663(18)	0.0112(8)
Cl27	2i	0.302(1)	-0.071(3)	0.8338(16)	0.4674(16)	0.0112(8)
Cl28	2i	0.302(1)	-0.571(3)	0.7923(17)	0.4778(17)	0.0112(8)
O21	2i	0.302(1)	-0.285(6)	0.846(6)	0.210(5)	0.008(1)
O22	2i	0.302(1)	0.251(7)	0.846(6)	0.210(5)	0.008(1)
O23	1a	0.302(1)	0	0	0	0.008(1)
O24	2i	0.302(1)	-0.218(4)	0.505(3)	0.500(2)	0.0118(18)

^{*a*} Sheet 1 is related to sheet 2 by 1/2 *a* translation.

and the average properties were obtained from 255 irreducible *k* points. A measure of the magnitude of the bonding was obtained by computing the crystal orbital Hamiltonian populations (COHP) which are the Hamiltonian population weighted density of states (DOS).^{25,26} As recommended, a reduced basis set (in which all ES LMTOs have been downfolded) was used for the COHP calculations.²⁷ Bands, DOS, and COHP curves were shifted so that $\epsilon_{\rm F}$ lies at 0 eV.

Results

Description of the Structure. The apparent disorder of the structure is related to stacking faults and must not be attributed to any difference of electronic or physicostructural properties between the two independent sheets. The structural analysis reveals that the interatomic distances of the first sheet (sheet 1, occupation factor = 0.7) are quite similar, within the su's, to those observed in the second sheet (sheet 2, occupation factor = 0.3). Let us recall that the calculated su's on the interatomic distances take into account, as a weighting factor, the occupation factor of each sheet. Consequently, the calculated su's on the interatomic distances are 2.33 lower in the first sheet (occupation factor = 0.3). In

(26) Boucher, F.; Rousseau, R. *Inorg. Chem.* 1998, *37*, 2351.(27) Jepsen, O.; Andersen, O. K. Personal communication.

Cli Ol Cl2⁻⁰O2 Cli Nbl Nbl Nbl Nb2 Nb2 Nb2 Nb2 Cli O2 Cli Cli O1 Cl2⁻⁰O2 Cli Nb2 Nb2 Nb2 Cli O1 Cl2⁻⁰O2 Cli Nb2 Nb2 Cli O1 Cl2⁻⁰O2 Cli Cli O1 Cl2⁻⁰O2 Cli Nb2 Nb2 Cli O1 Cl2⁻⁰O2 Cli Cli O1 Cl2⁻⁰O2 Cli Nb2 Nb2 Cli O1 Cl2⁻⁰O2 Cli Cli O1 Cl2⁻⁰O2 Cli Nb2 Cli O1 Cl2⁻⁰O2 Cli Cli O1 Cl2⁻⁰O2 Cli Cli O1 Cl2⁻⁰O2 Cli Cli O2 Cli O1 Cli O2 Cli Cli O2 Cli O1 Cli O2 Cli Cli O2 Cli O1 Cl

Figure 1. Representation of the interconnected Nb₆Clⁱ₆Oⁱ₆Cl^a₆ cluster units in the [Nb₆Clⁱ₆Oⁱ₄Oⁱ⁻ⁱ_{2/2}Cl^{a-a}_{4/2}Cl^a₂]_{∞} infinite chains. Displacement ellipsoids are shown at the 90% probability level.

the following discussion, we will consider the interatomic distances observed in sheet 1 that are more relevant because of their higher accuracy.

Description of the Nb₆Clⁱ₆Oⁱ₆Cl^a₆ Cluster Unit. The Nb₆ cluster that is edge-bridged by six inner oxygen and six inner chlorine ligands (Figure 1) exhibits the same oxygen/chlorine ordered distribution around the octahedral Nb₆ cluster as that found for PbLu₃Nb₆Cl₁₅O₆.^{13f} In the title compound, the six crystallographically independent Nb–Nb bond lengths spread within the range 2.788(2)–3.056(3) Å (av 2.898(2) Å). They compare rather well with the 2.7900(8) and 3.0173(9) Å (av 2.903(1) Å) Nb–Nb bond lengths found in PbLu₃Nb₆Cl₁₅O₆. The average Nb–Nb bond length in the title compound is also similar to Nb–Nb distances measured in other Nb₆ oxychlorides having six inner oxygen atoms and a VEC value

⁽²⁴⁾ Blöchl, P. E.; Jepsen, O.; Andersen, O. K. Phys. Rev. B 1994, 49, 16223.

⁽²⁵⁾ Dronskowski, R.; Blöchl, P. E. J. Phys. Chem. 1993, 97, 8617.

Table 3. Selected Interatomic Distances (Å) in Nb₁₀Cl₁₆O₇

sheet 1		sheet	sheet 2	
	Nb ₆ Cl	uster Unit		
Nb1-Nb2	2.809(1)	Nb21-Nb22	2.809(1)	
Nb1-Nb2	3.056(3)	Nb21-Nb22	3.055(7)	
Nb1-Nb3	2.794(2)	Nb21-Nb23	2.791(5)	
Nb1-Nb3	2.973(2)	Nb21-Nb23	2.972(4)	
Nb2-Nb3	2.788(2)	Nb22-Nb23	2.796(4)	
Nb2-Nb3	2.970(2)	Nb22-Nb23	2.980(4)	
Nb1-Cl1	2.533(10)	Nb21-Cl21	2.571(23)	
Nb1-Cl2	2.448(8)	Nb21-Cl22	2.374(20)	
Nb1-Cl3	2.483(15)	Nb21-Cl23	2.402(25)	
Nb1-O1	2.055(24)	Nb21-O21	1.941(49)	
Nb1-O3	2.225(2)	Nb21-O23	2.233(4)	
Nb2-Cl1	2.552(8)	Nb22-Cl21	2.493(20)	
Nb2-Cl2	2.432(10)	Nb22-Cl22	2.405(24)	
Nb2-Cl4	2.501(11)	Nb22-Cl24	2.448(40)	
Nb2-O2	2.067(17)	Nb22-O22	1.919(49)	
Nb2-O3	2.230(2)	Nb22-O23	2.223(4)	
Nb3-Cl3	2.437(14)	Nb23-Cl23	2.497(27)	
Nb3-Cl4	2.453(9)	Nb23-Cl24	2.533(24)	
Nb3-Cl6	2.575(10)	Nb23-Cl26	2.718(23)	
Nb3-O1	2.039(25)	Nb23-O21	2.032(57)	
Nb3-O2	2.037(16)	Nb23-O22	2.064(46)	
	Niobiun	n Pair Unit		
Nb4-Nb5	2.765(3)	Nb24-Nb25	2.758(7)	
Nb4-Cl5	2.366(12)	Nb24-Cl25	2.372(30)	
Nb4-Cl6	2.652(10)	Nb24-Cl26	2.691(24)	
Nb4-Cl7	2.387(7)	Nb24-Cl27	2.375(17)	
Nb4-Cl8	2.533(8)	Nb24-Cl28	2.545(22)	
Nb4-O2	2.057(19)	Nb24-O22	2.188(50)	
Nb4-O4	1.883(10)	Nb24-O24	1.910(23)	
Nb5-Cl5	2.387(10)	Nb25-Cl25	2.322(24)	
Nb5-Cl6	2.631(13)	Nb25-Cl26	2.747(30)	
Nb5-Cl7	2.394(8)	Nb25-Cl27	2.399(21)	
Nb5-Cl8	2.541(6)	Nb25-Cl28	2.584(18)	
Nb5-O1	2.062(22)	Nb25-O21	2.158(50)	
Nb5-O4	1.899(10)	Nb25-O24	1.875(23)	

of 14.¹⁵ This structural result suggests at first sight that the VEC value is equal to 14, although the absence of countercations and the interconnections between Nb₆ clusters and Nb₂ entities make difficult the calculation of the VEC. The Nb–Cl and Nb–O bond lengths are similar to the corresponding ones in other Nb₆ oxychlorides.^{9–13} The Nb₆Clⁱ₆Oⁱ₆-Cl^a₆ units are linked to each other along the *a* direction by shared inner oxygen and apical chlorine atoms to form [Nb₆Clⁱ₆Oⁱ₄Oⁱ⁻ⁱ_{2/2}Cl^{a–a}_{4/2}Cl^a₂]_∞ infinite chains. Such a connectivity was previously encountered in niobium oxoniobates with the general formula MNb₈O₁₄ (M = K, Ba, La)²⁸ but was never encountered hitherto in Nb₆ oxychlorides. Let us note that in both compounds the O^{i–i} bridging ligand is located in an unusual site built up from a quasiregular niobium square plane.

Description of the Nb₂(\mu_2-Clⁱ)₂Cl^a₄O₄ Unit. The Nb₂(\mu_2-Clⁱ)₂Cl^a₄O₄ unit (Figure 2) can be described as two edgeshared NbO₂Cl₄ distorted octahedra with the two oxygen atoms in *trans* **position resulting in the occurrence of Nb–Nb····Nb alternation with short and long Nb–Nb interatomic distances (2.765 and 3.749 Å). The Nb₂(\mu_2-Cl)₂-Cl₄O₄ units are linked to each other via four Cl and two O outer ligands to form [{Nb₂(\mu_2-Cl)₂O_{2/2}Cl_{4/2}O₂}₂]_∞ double chains. This structural part can be compared to that of NbOCl₂.¹⁷ However, instead of double chains, the structure**

Figure 2. Representation of the interconnected Nb₂(μ_2 -Cl₂Cl₄O₄ units in the [{Nb₂(μ_2 -Cl₂O_{2/2}Cl_{4/2}O₂}]₂ double chains. Displacement ellipsoids are shown at the 90% probability level. O4 has been refined isotropically.

of the latter is based on $[Nb_2(\mu_2-Cl)_2O_{2/2}Cl_{4/2}O_{2/2}]_{\infty}$ layers. The structural models obtained for NbOCl₂ that exhibit also a layered structure led to erroneous interatomic distances.^{2,17a,b} New investigations of this structure evidenced Nb-Nb pairs with a bond length equal to 2.97 Å, Nb-O interatomic distances ranging from 1.92 to 2.02 Å and Nb–Cl distances ranging from 2.43 to 2.50 Å.^{17c} The Nb-Cl and Nb-O interatomic distances are quite similar in the title compound and in NbOCl₂. Tight-binding band calculations performed on NbOCl₂ revealed that the out-of-plane Nb displacement is a crucial key in explaining the semiconducting properties of this material.²⁹ As observed in NbCl₄, the niobium atoms are not displaced out of the Cl_4 plane in $Nb_{10}Cl_{16}O_7$. The shorter Nb–Nb bond lengths within the Nb₂ pairs in Nb₁₀-Cl₁₆O₇ compared to those observed in NbOCl₂ and NbCl₄ seem to indicate that a larger number of electrons might be involved in the Nb–Nb bonding of the infinite Nb₂ chains.

Description of the Resulting Structure. The four remaining Oⁱ atoms and the two remaining Cl^a atoms of the [Nb₆Clⁱ₆Oⁱ₄Oⁱ⁻ⁱ_{2/2}Cl^{a-a}_{4/2}Cl^a₂] cluster chains are shared with the four remaining oxygen atoms of the [{Nb₄(μ_2 -Cl)₄O_{4/2}-Cl_{8/2}O₄}]_{∞} double chains and one-half of chlorine ligand involved in the connection of the Nb₂(μ_2 -Cl)₂Cl₄O₄ units in the [(Nb₄(μ_2 -Cl)₄O_{4/2}Cl_{8/2}O₄)]_{∞} double chains. The resulting Nb₁₀Cl₁₆O₇ layers (Figure 3), that can be written as Nb₆-Clⁱ₆Oⁱ_{4/2}Oⁱ⁻ⁱ_{2/2}Cl^{a-a}_{4/2}Cl^a_{2/2}Nb₄(μ_2 -Cl)₄O_{4/2}Cl_{4/4}O_{4/2}, are parallel to the *bc* plane. The cohesion of the structure is ensured by van der Waals contacts between chlorine atoms of adjacent layers, which is one of the proposed criteria for layered structure.³¹

Staking Description. The layers are stacked along the [011] direction. Such a stacking can schematically be described as an ABA succession of layers if one considers an ordered structure. The projections of the stacking along the *a* and the [110] directions are represented in Figures 4 and 5, respectively. As proposed in the case of NbOCl₂,^{17d} for every alternating A and B layers, two positions of the sheets that are related to each other by a 1/2 a translation are possible. For clarity, we will label them A1, A2 and B1, B2. Indeed, regardless of the A and B type of layer staking (type 1, A1B1A1) or (type 2, A2B2A2), the projection along the *a* direction remains unchanged. However, the structural

⁽²⁸⁾ Köhler, J.; Tichtau, R.; Simon, A. J. Chem. Soc., Dalton Trans. 1991, 829.

⁽²⁹⁾ Whangbo, M. H. Inorg. Chem. 1982, 21, 1721.

Figure 3. Representation of the resulting Nb₁₀Cl₁₆O₇ layer that spreads along the *a* direction.

Figure 4. Projection of the structure along the [100] direction.

Figure 5. A1B1A1 succession of layers along the [110] direction. For sake of clarity, the chlorine atoms are not represented.

results show a type 1/type 2 random stacking along the [011] direction with a 70:30 ratio. This disorder can be modeled according to a simple mathematical combination: for 10 successive layers, seven of them are stacked according to type 1 and the three other ones according to type 2; the number of possible (type 1)/(type 2) combinations being equal to 120 ($10!/(7! \times 3!)$). For illustration, a A1B1A2A1 disordered sequence is represented in Figure 6.

Figure 6. Example of stacking fault in $Nb_{10}Cl_{16}O_7$ with a B1A2B1 sequence instead of B1A1B1. For sake of clarity, the chlorine atoms are not represented.

Table 4. Closest Cl-Cl Interatomic Distances between Layers (Å)

 Corresponding to van der Waals Contacts

A1B1A1 ordered stacking		A1B2A1 disord	A1B2A1 disordered stacking	
Nb ₆ Cluster Unit/Nb ₂ Cluster Unit				
Cl3-Cl6	3.679	Cl4-Cl26	3.589	
Cl4-Cl5	3.584	Cl3-Cl25	3.677	
Cl1-Cl7	3.577	Cl1-Cl27	3.622	
Cl1-Cl8	3.656	Cl1-Cl28	3.632	
Cl2-Cl8	3.648	Cl2-Cl28	3.575	
Cl2-Cl7	3.549	Cl2-Cl27	3.586	
Nb ₂ Pair Units/Nb ₂ Pair Units				
Cl7/Cl7	3.582	Cl7-Cl27	3.583	
Nb ₆ Cluster Unit/Nb ₆ Cluster Unit				
Cl3-Cl4	3.417	C13-C123	3.422	
Cl3-Cl3	3.471	C13-C124	3.414	
Cl4-Cl4	3.350	Cl4-Cl23	3.471	
Cl4-Cl3	3.417	Cl4-Cl24	3.449	

Structural Cohesion. The cohesion of the Nb₁₀Cl₁₆O₇ structure is ensured by three types of van der Waals contacts between layers: Nb₂ unit/Nb₂ unit, Nb₂ unit/Nb₆ cluster unit, and Nb₆ cluster unit/Nb₆ cluster unit. In Table 4 are reported the closest Cl-Cl interatomic distances between layers corresponding to van der Waals contacts (i.e., ca. 3.5 Å).³² The analysis of these data indicates two features: (i) the strongest interactions are found between niobium cluster units and between niobium pair units, (ii) the Cl-Cl interatomic distances remain unchanged for the A1B1A1 succession of layers compared to the A1B2A1 one (and obviously for the homologous sequences B1A2B1 as well as for the less probable but theoretically possible A2B1A2 and B2A1B2 sequences). The latter point which has not been discussed yet in the case of NbOCl₂ appears to be the reason for the disordered stacking of layers. The absence of "driving forces" during the crystallization process, such as countercations that would impose a particular coordinence with their specific environment, leads to a random stacking.

 $Nb_{10}Cl_{16}O_7$ crystals are brittle similarly to the two homologous $Mo_6I_8S_2{}^{34}$ and $Nb_6I_9S.{}^{35}$ These thio-iodides are

(30) Taylor, D. R.; Calabrese, J. C.; Larsen, E. M. Inorg. Chem. 1977, 16, 721.

- (31) Hulliger, F. *Structural Chemistry of Layer-Type Phases*; Reidel: Dordrecht, 1976; p 28.
- (32) Bondi, A. J. Phys. Chem. 1964, 68, 441.
- (33) Schäfer, H.; von Schnering, H. G.; Tillack, J.; Kuhnen, F.; Wöhrle, H.; Baumann, H. Z. Anorg. Allg. Chem. **1967**, 353, 281.
- (34) Perrin, C.; Sergent, M. J. Chem. Res. 1983, 2, 38.
- (35) Meyer, H.-J.; Corbett, J. D. Inorg. Chem. 1991, 30, 963.

built up from infinite $[Mo_6I^i_{5}S^iS^{i-i}_{2/2}I^{a-a}_{6/2}]$ and $[Nb_6I^i_{6}S^iS^{i-i}_{2/2}I^{a-a}_{6/2}]$ chains, respectively, in which all apical iodine atoms are shared between units. Only van de Waals contacts exist between adjacent chains. On the contrary, crystals of molybdenum and tungsten M_6X_{12} binary halides are quite stable under handling. Their structure is characterized by $M_6X^i_8X^{a-a}_{4/2}X^a_2$ layers, and the structural cohesion is also ensured by van der Waals contacts between layers, but an unshared apical ligand leads to strongly interpenetrated layers.³³ This unshared apical ligand appears to be crucial to prevent the sliding of layers with respect to each other.

Theoretical Considerations. Many theoretical studies have been devoted to the octahedral cluster compounds of general formula $[(M_6X_{12}^i)L_6^a]^{n-}$ (M = Nb, Ta; Xⁱ = twobonded inner halide ligand; $L^a = two$ -electron donor apical ligand (H₂O, OH⁻, Cl⁻, Br⁻)).³⁶ With the aid of symmetry and orbital overlap arguments,³⁶ the MO pattern of this type of cluster can be determined by considering the interaction of the frontier orbitals of six square-pyramidal ML₅ fragments since each transition metal atom is locally surrounded by four inner and one apical ligands. Considering the O_h symmetry, a set of 8 metal-metal bonding MOs of symmetry a_{1g} , t_{2g} , t_{1u} , and a_{2u} and 16 metal-metal antibonding MOs is expected for this kind of M₆Xⁱ₁₂L^a₆ octahedral unit. The complete occupation of the M-M bonding MOs fulfills a closed-shell configuration with a VEC of 16.36 However, owing to the M-X and M-L antibonding character of the highest M-M bonding a_{2u} level that lies in the middle of a large energy gap separating the other seven M-M bonding MOs from M-M antibonding MOs, vacancy (14 VEs) or partial occupation (15 VEs) of this overall nonbonding MO can be favored. Indeed, oxychloride cluster compounds bonded to three or more oxide inner ligands have a VEC of 14.⁸⁻¹¹ Such an electron count for the Nb₆Clⁱ₆Oⁱ₆Cl^a₆ cluster belonging to the title compound leaves an average electron count of 1.5 on each metal atom of the $[{Nb_2(\mu_2-Cl)_2O_{2/2}}]$ $Cl_{4/2}O_2$]₂]_{∞} double chains. This is more than the d¹ electron count of metal atoms in the related NbOCl₂ compound that contains similar $(Nb_2(\mu_2-Cl^i)_2Cl^a_4O_4$ units with an alternation of two unequal Nb-Nb distances.^{17,29} In order to confirm the electron distribution of 14 electrons for octahedral cluster and $d^{1.5}$ on the metal atoms of the Nb₂ pairs, periodic calculations using density functional theory were carried out on models of $Nb_{10}Cl_{16}O_7$ made up from sheet 1 or sheet 2. Similar results were obtained for both models, but we will only report the results obtained for the model based on sheet 1. Density of states (DOS) and crystal orbital Hamiltonian population (COHP) curves are sketched in Figure 7. A first analysis reveals that the Nb-Nb COHP curve corresponding to the Nb-Nb contacts of the octahedral cluster shows that Nb–Nb bonding bands deriving from the a_{2u} molecular level above the Fermi level are vacant. This confirms the electron count of 14 for the octahedral Nb₆Clⁱ₆Oⁱ₆Cl^a₆ unit. The Fermi level lies above a peak that shows a major character of niobium atoms of the Nb₂ pairs (Figure 7c). This peak of DOS is Nb-Nb bonding in character. The following peak

Figure 7. LMTO calculations for Nb₁₀Cl₁₆O₇: (a) total DOS, (b) Nb₆Oⁱ₆-Clⁱ₆Cl^a₆ projected DOS, (c) [{Nb₂(μ_2 -Cl)₂O_{2/2}Cl_{4/2}O₂}_{2]_∞} double chains projected DOS, (d) Nb–Nb COHP curve for Nb₆Oⁱ₆Clⁱ₆Cl^a₆ cluster unit, and (e) Nb–Nb COHP curve for [{Nb₂(μ_2 -Cl)₂O_{2/2}Cl_{4/2}O₂}_{2]_∞} double chains. The integrated COHP is shown as a dashed line.

of DOS lying around -1 eV shows a stronger Nb–Nb bonding character in the chains as well (Figure 7e). Previous theoretical studies on NbOCl₂²⁹ indicate that the latter peak around -1 eV is σ -type bonding whereas the former, just below 0 eV, is π -type bonding. In the case of NbOCl₂ which contains d¹ metal, only the lowest band is filled. In the case of Nb₁₀Cl₁₆O₇, DOS and COHP curves show that the π -type Nb–Nb bonding band is also occupied. This explains the very short Nb–Nb distance of 2.765 Å in the title compound compared to the corresponding separations in NbCl₄^{30,37} and NbOCl₂^{17,29} (3.029³⁰ and 2.97^{17c} Å, respectively). The 0.33 eV computed band gap is consistent with semiconducting behavior as suggested by the transport property measurements.

Concluding Remark. This work reports the synthesis, the single crystal structure determination, and the electronic structure of a novel layered Nb₁₀Cl₁₆O₇ oxychloride compound, built up from both Nb₂ pairs and Nb₆ octahedral clusters. DFT results suggest, in agreement with the structural results, that, among the 20 metallic electrons involved in the metal-metal bonding of Nb₁₀Cl₁₆O₇, 14 electrons belong to the octahedral Nb₆Clⁱ₆Oⁱ₆Cl^a₆ unit whereas the 6 others (i.e., 1.5 per Nb atom) participate to the bonding in the distorted [{Nb₂(μ_2 -Cl)₂O_{2/2}Cl_{4/2}O₂} or the octahedral.

⁽³⁷⁾ Whangbo, M.-H.; Foshee, M. J. Inorg. Chem. 1981, 20, 113.

A Novel Layered Niobium Oxychloride Compound

Acknowledgment. We thank T. Guizouarn (Rennes) for resistivity measuments, J.-Y. Thépot (Rennes) for EPR measurements, and J.-C. Jegaden (Rennes) for EDS analysis. S.C. and C.P. are grateful to "Fondation Langlois" for financial support.

Supporting Information Available: Two X-ray crystallographic information files of the structure of Nb₁₀Cl₁₆O₇ solved in C2/m and $P\bar{1}$ space groups, respectively (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

IC0350990